
Fast Python* Analytics and Deep
Learning Frameworks on CPU
Nathan Greeneltch, PhD

Consulting Engineer, Intel Corporation

Intel® Accelerations for AI

Intel® AI Framework
Accelerations
Intel® Python* Accelerations
Intel® DAAL for Python*
Analytics

Get Deep Learning Framework
Performance on Intel®
Architecture
Nathan Greeneltch, PhD

Consulting Engineer, Intel Corporation

Intel® Optimized AI Frameworks

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

4

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

5

Copyright © Intel Corporation 2019

*Other names and brands may be claimed as the property of others.

Consum
er Health Finance Retail Govern

ment Energy Transpo
rt

Industri
al Other

Smart Assistants

Chatbots

Search

Personalization

Augmented

Reality

Robots

Enhanced

Diagnostics

Drug

Discovery

Patient Care

Research

Sensory

Aids

Algorithmic

Trading

Fraud Detection

Research

Personal Finance

Risk Mitigation

Support

Experience

Marketing

Merchandising

Loyalty

Supply Chain

Security

Defense

Data

Insights

Safety & Security

Resident

Engagement

Smarter

Cities

Oil & Gas

Exploration

Smart

Grid

Operational

Improvement

Conservation

In-Vehicle

Experience

Automated

Driving

Aerospace

Shipping

Search & Rescue

Factory

Automation

Predictive

Maintenance

Precision

Agriculture

Field Automation

Advertising

Education

Gaming

Professional & IT

Services

Telco/Media

Sports

Source: Intel forecast

Artificial Intelligence Will Transform…

6

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Source: Seagate “Data Age 2025” July 2017
Forbes Magazine: 20 Mind-Boggling Facts Every Business Leader Must Reflect On Now (Nov 1, 2015); Inside Big Data: Exponential Growth of Data (Feb 16, 2017)

Yet less than 1% of
all data

is ever analyzed
and used

World’s data will grow
10Xin 10 years

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Intel AI Strategy: “Artificial Intelligence Everywhere”

8

Discrete AI

Artificial
Intelligence
everywhere

Co
m

m
on

 so
ftw

ar
e

st
ac

k
Ec

os
ys

te
m

CPU AI Intel® DL Boost

Inference

Training

VPU EYEQ iGPU FPGA
Accelerators

Intel® NNP-L GPU

Client IoT Edge

Datacenter
GPU FPGA

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Intel Processors

AI (ML & DL) Software Stack for Intel® Processors

Intel® Math Kernel Library (Intel® MKL) is a proprietary performance library for wide
range of math and science applications
Distribution: Intel Registration Center, package repositories (apt, yum, conda, pip),
Intel® Parallel Studio XE, Intel® System Studio

Deep learning and AI ecosystem includes edge and datacenter applications.
• Open source frameworks (TensorFlow*, MXNet*, PyTorch*, PaddlePaddle*)
• Intel deep learning products (BigDL, OpenVINO™ toolkit)
• In-house user applications

Intel® MKL and Intel® MKL-DNN optimize deep learning and machine learning
applications for Intel® processors :
• Through the collaboration with framework maintainers to upstream changes

(Tensorflow*, MXNet*, PyTorch, PaddlePaddle*)
• Through Intel-optimized forks (Caffe*)
• By partnering to enable proprietary solutions

Intel® Math Kernel Library for Deep Neural Networks (Intel® MKL-DNN) is an open
source performance library for deep learning applications (available at
https://github.com/intel/mkl-dnn)
• Fast open source implementations for wide range of DNN functions
• Early access to new and experimental functionality
• Open for community contributions

Intel MKL-DNNIntel MKL

9

https://github.com/intel/mkl-dnn

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

SEE ALSO: Machine Learning Libraries for Python (Scikit-learn, Pandas, NumPy), R (Cart, randomForest, e1071), Distributed (MlLib on Spark, Mahout)
*Limited availability today
Other names and brands may be claimed as the property of others.

* *

Popular DL Frameworks are now optimized for CPU!

See installation guides at ai.intel.com/framework-optimizations/

More under optimization:

TM

*
* *

*FOR

https://www.intelnervana.com/framework-optimizations/

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Artificial
I ntelligence

is the ability of machines to
learn from experience without explicit
programming, in order
to perform cognitive functions
associated with the human mind

Artificial Intelligence

Machine learning
Algorithms whose performance
improve as they are exposed to

more data over time

Deep
learning

Subset of machine
learning in which multi-
layered neural networks
learn from vast amounts

of data

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Machine Learning Technology Breakdown

Training
Train an algorithm to build a model

• Time-to-model is critical

Inference
Deploy models for classification,

prediction, recognition

• Easily distributed
• Criteria: Throughput, TCO @ scale

Deep Learning
Hierarchical approach with many hidden layers -

gaining fame from accurately classifying
data-like images, speech, and natural language.

Features are learned.

Other (or classic) ML
Traditional ML techniques for clustering, regression,
and classification using very few (one or two) hidden

layers. Requires feature engineering.

Typical customers: CSP, HPC Typical customers: Enterprise, HPC

Machine Learning
Autonomous computation methods that learn from experience (data)

“dog”

Intel® DAAL Focus

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Machine Learning Technology Breakdown

Training
Train an algorithm to build a model

• Time-to-model is critical

Inference
Deploy models for classification,

prediction, recognition

• Easily distributed
• Criteria: Throughput, TCO @ scale

Deep Learning
Hierarchical approach with many hidden layers -

gaining fame from accurately classifying
data-like images, speech, and natural language.

Features are learned.

Typical customers: CSP, HPC

“dog”

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Using Deep Learning

0%

8%

15%

23%

30%

Human

2010 Present

Image
recognition

0%

8%

15%

23%

30%

2000 Present

Speech
recognition

Using Deep Learning

Er
ro

r

Er
ro

r

Human

97%
person 99%

“play song”

Source: ILSVRC ImageNet winning entry classification error rate each year 2010-2016 (Left), https://www.microsoft.com/en-us/research/blog/microsoft-researchers-achieve-new-conversational-speech-recognition-milestone/ (Right)

Deep Learning Breakthroughs
Machines able to meet or exceed human image & speech recognition

Tumor
Detection

Document
Sorting

Oil & Gas
search

Voice
Assistant

Defect
detection

Genome
sequencin
g

e.g.

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Depth of Networks

http://image-net.org/challenges/talks/ilsvrc2015_deep_residual_learning_kaiminghe.pdf

ImageNet Large Scale Visual Recognition Competition (ILSVRC)

CNN

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

your
FOUNDATION

for AI

Intel® Xeon® Processor Scalable Family
Now build the AI you want on the CPU you know

Get maximum utilization
running data center and AI workloads side-by-side

Break memory barriers
to apply AI to large data sets and models

Train models at scale
through efficient scaling to many nodes

Access optimized tools
including continuous performance gains for TensorFlow*, MXNet*, more

Run in the cloud
including AWS, Microsoft, Alibaba, TenCent, Google, Baidu, more

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

1.0

2.8X

Intel® Optimized Caffe
At launch, July 11th 2017

With new library and
framework optimizations

Jan 19th 2018

Introducing new INT8 VNNI
instruction

Projected Performance4

Intel® Xeon® Platinum 8180 Processor
(Codenamed: Skylake)

Projected Future Intel® Xeon® Scalable
Processor

(Codename: Cascade Lake)

11X

Continued Innovation Driving Deep Learning Inference Performance
On Intel® Xeon® Scalable Processors

FP32

FP32

1 Intel® Optimization for Caffe Resnet-50 performance does not necessarily represent other Framework performance.
2 Based on Intel internal testing: 1X (7/11/2017), 2.8X (1/19/2018) and 5.4X (7/26/2018) performance improvement based on Intel® Optimization for Café Resnet-50 inference throughput performance on Intel® Xeon® Scalable Processor.
3 11X (7/25/2018) Results have been estimated using internal Intel analysis, and provided to you for informational purposes. Any differences in your system hardware, software or configuration may affect your actual performance.

Performance results are based on testing as of 7/11/2017(1x), 1/19/2018(2.8x) & 7/26/2018(5.4) and may not reflect all publically available security update. No product can be absolutely. See configuration disclosure for details. No product can be absolutely secure .Optimization Notice: Intel's compilers may or may not optimize
to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not
manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit: http://www.intel.com/performance

Intel® Optimization for Caffe ResNet-501

Inference Throughput

5.4X
INT8

Enabling Lower precision &
system optimizations for higher

throughput
August 1th 2018

Intel® Deep
Learning

Boost

Re
la

tiv
e

 In
fe

re
nc

e
Th

ro
ug

hp
ut

 (i
m

ag
es

/s
ec

)
(H

ig
he

r i
s

be
tt

er
)

2

2

2

4Inference projections assume 100% socket to socket scaling

http://www.intel.com/performance

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Configurations for Performance Growth- Inference throughput
1x inference throughput improvement in July 2017:

Tested by Intel as of July 11th 2017: Platform: 2S Intel® Xeon® Platinum 8180 CPU @ 2.50GHz (28 cores), HT disabled, turbo disabled, scaling governor set to “performance” via intel_pstate driver, 384GB DDR4-2666 ECC RAM. CentOS Linux release
7.3.1611 (Core), Linux kernel 3.10.0-514.10.2.el7.x86_64. SSD: Intel® SSD DC S3700 Series (800GB, 2.5in SATA 6Gb/s, 25nm, MLC).Performance measured with: Environment variables: KMP_AFFINITY='granularity=fine, compact‘,
OMP_NUM_THREADS=56, CPU Freq set with cpupower frequency-set -d 2.5G -u 3.8G -g performance. Caffe: (http://github.com/intel/caffe/), revision f96b759f71b2281835f690af267158b82b150b5c. Inference measured with “caffe time --
forward_only” command, training measured with “caffe time” command. For “ConvNet” topologies, dummy dataset was used. For other topologies, data was stored on local storage and cached in memory before training. Topology specs from
https://github.com/intel/caffe/tree/master/models/intel_optimized_models (ResNet-50),and https://github.com/soumith/convnet-benchmarks/tree/master/caffe/imagenet_winners (ConvNet benchmarks; files were updated to use newer Caffe
prototxt format but are functionally equivalent). Intel C++ compiler ver. 17.0.2 20170213, Intel MKL small libraries version 2018.0.20170425. Caffe run with “numactl -l“.

2.8x inference throughput improvement in January 2018:
Tested by Intel as of Jan 19th 2018 Processor :2 socket Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz / 28 cores HT ON , Turbo ON Total Memory 376.46GB (12slots / 32 GB / 2666 MHz). CentOS Linux-7.3.1611-Core, SSD sda RS3WC080 HDD 744.1GB,sdb
RS3WC080 HDD 1.5TB,sdc RS3WC080 HDD 5.5TB , Deep Learning Framework Intel® Optimization for caffe version:f6d01efbe93f70726ea3796a4b89c612365a6341 Topology::resnet_50_v1 BIOS:SE5C620.86B.00.01.0009.101920170742 MKLDNN: version:
ae00102be506ed0fe2099c6557df2aa88ad57ec1 NoDataLayer. . Datatype:FP32 Batchsize=64 Measured: 652.68 imgs/sec vs Tested by Intel as of July 11th 2017: Platform: 2S Intel® Xeon® Platinum 8180 CPU @ 2.50GHz (28 cores), HT disabled, turbo
disabled, scaling governor set to “performance” via intel_pstate driver, 384GB DDR4-2666 ECC RAM. CentOS Linux release 7.3.1611 (Core), Linux kernel 3.10.0-514.10.2.el7.x86_64. SSD: Intel® SSD DC S3700 Series (800GB, 2.5in SATA 6Gb/s, 25nm,
MLC).Performance measured with: Environment variables: KMP_AFFINITY='granularity=fine, compact‘, OMP_NUM_THREADS=56, CPU Freq set with cpupower frequency-set -d 2.5G -u 3.8G -g performance. Caffe: (http://github.com/intel/caffe/),
revision f96b759f71b2281835f690af267158b82b150b5c. Inference measured with “caffe time --forward_only” command, training measured with “caffe time” command. For “ConvNet” topologies, dummy dataset was used. For other topologies,
data was stored on local storage and cached in memory before training. Topology specs from https://github.com/intel/caffe/tree/master/models/intel_optimized_models (ResNet-50),and https://github.com/soumith/convnet-
benchmarks/tree/master/caffe/imagenet_winners (ConvNet benchmarks; files were updated to use newer Caffe prototxt format but are functionally equivalent). Intel C++ compiler ver. 17.0.2 20170213, Intel MKL small libraries version
2018.0.20170425. Caffe run with “numactl -l“.

5.4x inference throughput improvement in August 2018:
Tested by Intel as of measured July 26th 2018 :2 socket Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz / 28 cores HT ON , Turbo ON Total Memory 376.46GB (12slots / 32 GB / 2666 MHz). CentOS Linux-7.3.1611-Core, kernel: 3.10.0-862.3.3.el7.x86_64, SSD sda
RS3WC080 HDD 744.1GB,sdb RS3WC080 HDD 1.5TB,sdc RS3WC080 HDD 5.5TB , Deep Learning Framework Intel® Optimization for caffe version:a3d5b022fe026e9092fc7abc7654b1162ab9940d Topology::resnet_50_v1
BIOS:SE5C620.86B.00.01.0013.030920180427 MKLDNN: version:464c268e544bae26f9b85a2acb9122c766a4c396 instances: 2 instances socket:2 (Results on Intel® Xeon® Scalable Processor were measured running multiple instances of the
framework. Methodology described here: https://software.intel.com/en-us/articles/boosting-deep-learning-training-inference-performance-on-xeon-and-xeon-phi) NoDataLayer. Datatype: INT8 Batchsize=64 Measured: 1233.39 imgs/sec vs Tested by
Intel as of July 11th 2017:2S Intel® Xeon® Platinum 8180 CPU @ 2.50GHz (28 cores), HT disabled, turbo disabled, scaling governor set to “performance” via intel_pstate driver, 384GB DDR4-2666 ECC RAM. CentOS Linux release 7.3.1611 (Core), Linux
kernel 3.10.0-514.10.2.el7.x86_64. SSD: Intel® SSD DC S3700 Series (800GB, 2.5in SATA 6Gb/s, 25nm, MLC).Performance measured with: Environment variables: KMP_AFFINITY='granularity=fine, compact‘, OMP_NUM_THREADS=56, CPU Freq set
with cpupower frequency-set -d 2.5G -u 3.8G -g performance. Caffe: (http://github.com/intel/caffe/), revision f96b759f71b2281835f690af267158b82b150b5c. Inference measured with “caffe time --forward_only” command, training measured
with “caffe time” command. For “ConvNet” topologies, dummy dataset was used. For other topologies, data was stored on local storage and cached in memory before training. Topology specs from
https://github.com/intel/caffe/tree/master/models/intel_optimized_models (ResNet-50). Intel C++ compiler ver. 17.0.2 20170213, Intel MKL small libraries version 2018.0.20170425. Caffe run with “numactl -l“.

11X inference throughput improvement with CascadeLake:
Future Intel Xeon Scalable processor (codename Cascade Lake) results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Any differences in your
system hardware, software or configuration may affect your actual performance vs Tested by Intel as of July 11th 2017: 2S Intel® Xeon® Platinum 8180 CPU @ 2.50GHz (28 cores), HT disabled, turbo disabled, scaling governor set to “performance” via
intel_pstate driver, 384GB DDR4-2666 ECC RAM. CentOS Linux release 7.3.1611 (Core), Linux kernel 3.10.0-514.10.2.el7.x86_64. SSD: Intel® SSD DC S3700 Series (800GB, 2.5in SATA 6Gb/s, 25nm, MLC).Performance measured with: Environment
variables: KMP_AFFINITY='granularity=fine, compact‘, OMP_NUM_THREADS=56, CPU Freq set with cpupower frequency-set -d 2.5G -u 3.8G -g performance. Caffe: (http://github.com/intel/caffe/), revision
f96b759f71b2281835f690af267158b82b150b5c. Inference measured with “caffe time --forward_only” command, training measured with “caffe time” command. For “ConvNet” topologies, dummy dataset was used. For other topologies, data was
stored on local storage and cached in memory before training. Topology specs from https://github.com/intel/caffe/tree/master/models/intel_optimized_models (ResNet-50),. Intel C++ compiler ver. 17.0.2 20170213, Intel MKL small libraries
version 2018.0.20170425. Caffe run with “numactl -l“.

http://github.com/intel/caffe/
https://github.com/intel/caffe/tree/master/models/intel_optimized_models
https://github.com/soumith/convnet-benchmarks/tree/master/caffe/imagenet_winners
http://github.com/intel/caffe/
https://github.com/intel/caffe/tree/master/models/intel_optimized_models
https://github.com/soumith/convnet-benchmarks/tree/master/caffe/imagenet_winners
https://software.intel.com/en-us/articles/boosting-deep-learning-training-inference-performance-on-xeon-and-xeon-phi
http://github.com/intel/caffe/
https://github.com/intel/caffe/tree/master/models/intel_optimized_models
http://github.com/intel/caffe/
https://github.com/intel/caffe/tree/master/models/intel_optimized_models

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others. 21

Deep Learning INFERENCE & Deep Learning TRAINING

Intel® Xeon® Scalable Processors for AI

Copyright © Intel Corporation 2019

*Other names and brands may be claimed as the property of others.

Intel® Advanced Vector Extensions 512 (Intel® AVX-512)

Intel internal measurements. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and
MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. Configuration Summary:
1-Node, 2 x Intel® Xeon® Platinum 8180 Processor on Purley-EP (Lewisburg) (S2600WF) with 384 GB (12x32GB DDR4-2666) Total Memory, Intel S3610 800GB SSD, BIOS:
SE5C620.86B.01.00.0471.040720170924, 04/07/2017, RHEL Kernel: 3.10.0-514.16.1.el7.x86_64 x86_64, Benchmark: Intel® Optimized MP LINPACK

669

1178
2034

3259

760 768 791 767

3.1

2.8

2.5

2.1

0

0.5

1

1.5

2

2.5

3

3.5

0

500

1000

1500

2000

2500

3000

3500

SSE4.2 AVX AVX2 AVX512
Co

re
 Fr

eq
ue

nc
y

GF
LO

Ps
, S

ys
te

m
 P

ow
er

LINPACK Performance

GFLOPs Power (W) Frequency (GHz)

1.00
1.74

2.92

4.83

0

2

4

6

SSE4.2 AVX AVX2 AVX512No
rm

al
ize

d
to

 SS
E4

.2

GF
LO

Ps
/W

at
t

GFLOPs / Watt

1.00
1.95

3.77

7.19

0

2

4

6

8

SSE4.2 AVX AVX2 AVX512

No
rm

al
ize

d
to

 SS
E4

.2

GF
LO

Ps
/G

Hz

GFLOPs / GHz

Intel® AVX-512 delivers significant performance and
efficiency gains

22

512-bit wide vectors, 32 operand registers, 8 64b mask registers, Embedded broadcast & rounding

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Int8 for Inference on Intel® Xeon® Scalable Processors

FP32

INT8

Typical Intel® AVX-512 instruction to perform FP32 convolutions: vfmadd231ps

INPUT
FP32

INPUT
FP32

vfmadd231ps OUTPUT
FP32

Typical Intel® AVX-512 instructions to perform INT8 convolutions: vpmaddubsw, vpmaddwd, vpaddd

INPUT
INT8

INPUT
INT8

vpmaddubsw OUTPUT
INT16

CONSTANT
INT16

vpmaddwd OUTPUT
INT32

CONSTANT
INT32

vpaddd OUTPUT
INT32

Lower
precision

integer ops

64 Ops/Cycle

85 Ops/Cycle

Increase
Operations/cycl

e to improve
throughput

performance

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

1.0

2.8X

Intel® Optimized Caffe
At launch, July 11th 2017

With new library and
framework optimizations

Jan 19th 2018

Introducing new INT8 VNNI
instruction

Intel® Xeon® Platinum 8180 Processor

2nd Generation Intel® Xeon® Scalable
Processor

11X

Continued Innovation Driving Deep Learning Inference Performance
On Intel® Xeon® Scalable Processors

FP32

FP32

1 Intel® Optimization for Caffe Resnet-50 performance does not necessarily represent other Framework performance.
2 Based on Intel internal testing: 1X (7/11/2017), 2.8X (1/19/2018) and 5.4X (7/26/2018) performance improvement based on Intel® Optimization for Café Resnet-50 inference throughput performance on Intel® Xeon® Scalable Processor. See Configuration Details 53
3 11X (7/25/2018) Results have been estimated using internal Intel analysis, and provided to you for informational purposes. Any differences in your system hardware, software or configuration may affect your actual performance.

Performance results are based on testing as of 7/11/2017(1x), 1/19/2018(2.8x) & 7/26/2018(5.4) and may not reflect all publically available security update. No product can be absolutely. See configuration disclosure for details. No product can be absolutely secure .Optimization Notice: Intel's compilers may or may not optimize
to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not
manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit: http://www.intel.com/performance

Intel® Optimization for Caffe ResNet-501

Inference Throughput

5.4X
INT8

Enabling Lower precision &
system optimizations for higher

throughput
August 1th 2018

Intel® Deep
Learning Boost

Re
la

tiv
e

 In
fe

re
nc

e
Th

ro
ug

hp
ut

 (i
m

ag
es

/s
ec

)
(H

ig
he

r i
s b

et
te

r)

2

2

2

4Inference projections assume 100% socket to socket scaling

http://www.intel.com/performance

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Training Performance: ResNet-50/ChestXRay14
Intel® 2S Xeon® Gold 6148F processor based DellEMC* PowerEdge C6420 Zenith* Cluster on OPA™ Fabric

TensorFlow* 1.6 + horovod*, IMPI

1

104

120

147

0

20

40

60

80

100

120

140

160

Node=1, Workers=4
Global Batch Size=64

Nodes=128, Workers=512
Global Batch Size=8192

Nodes=200, Workers=800
Global Batch Size=8000

Nodes=256, Workers=1024
Global Batch Size=8192

Re
la

tiv
e

Tr
ai

ni
ng

 T
hr

ou
gh

pu
t (

im
ag

es
/s

ec
)

(H
ig

he
r i

s B
et

te
r)

104x faster using 128
Intel® Xeon® nodes!

120x faster using 200
Intel® Xeon® nodes!

147x faster using 256
Intel® Xeon® nodes!

Performance results are based on testing as of May 17, 2018 and may not reflect all publicly available security update. See configuration disclosure for details. No product can be absolutely secure.
Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not
guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Software and workloads used in performance tests may have been
optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You
should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit: http://www.intel.com/performance

http://www.intel.com/performance

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

AI Performance Growth on Intel® Xeon® Processors
Software Optimizations and Hardware features driving Deep Learning Performance on Intel®

Xeon® Scalable Processors

1 5.7x inference throughput improvement with Intel® Optimizations for Caffe ResNet-50 on Intel® Xeon® Platinum 8180 Processor in Feb 2019 compared to performance at launch in July 2017. See configuration details on Config 1
Performance results are based on testing as of dates shown in configuration and may not reflect all publicly available security updates. No product can be absolutely secure. See configuration disclosure for details. Optimization Notice:
Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with
Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific
instruction sets covered by this notice. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured
using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit: http://www.intel.com/performance

Baseline

50x

285x

The picture can't be displayed.

2S Intel® Xeon® Scalable Processor (Skylake)
July 2017 July 2017 Skylake launch February 2019

vs. Baseline vs. Baseline

The picture can't be displayed.

5.7x1

improved use of
parallelization and

vectorization

improvement with library and
framework optimizations, enabling lower

precision & system Optimizations

Orders of
magnitude

improvement in
deep learning
performance

http://www.intel.com/performance

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Optimized Deep Learning Frameworks and Toolkits
Gen on Gen Performance gains for ResNet-50 with Intel® DL Boost

See Configuration Details 5
Performance results are based on testing as of dates shown in configuration and may not reflect all publicly available security updates. No product can be absolutely secure. See configuration disclosure for details. Optimization Notice:
Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with
Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific
instruction sets covered by this notice. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured
using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit: http://www.intel.com/performance

2S Intel® Xeon® Platinum 8280 Processor vs 2S Intel® Xeon® Platinum 8180 Processor

4.0x

2.3x1.8x

3.9x

1.8x

3.0x

Intel® Xeon®
Scalable Processor

2nd Gen Intel® Xeon®
Scalable Processor

1.9x

3.9x

2.1x

3.7xFP32 INT8 w/
Intel® DL Boost

INT8 INT8 w/
Intel® DL Boost

http://www.intel.com/performance

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Deep Learning Training

Forward Propagation

Backward Propagation

Cat Person

Ground TruthNetwork Output

Complex Networks with billions of parameters can take days to train on a modern processor

Hence, the need to reduce time-to-train. Maybe using a cluster of processing nodes?

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

143 GFLOPS¹
1 TFLOPS2

8 TFLOPS³

Paragon
#1 in 1993

ASCI Red
#1 in 1997

Data Center and
Cloud 2019

Xeon Server
2017

1. https://www.top500.org/featured/systems/intel-xps-140-paragon-sandia-national-labs/

2. https://en.wikipedia.org/wiki/Advanced_Simulation_and_Computing_Program

3. https://ark.intel.com/products/120496/Intel-Xeon-Platinum-8180-Processor-38_5M-Cache-2_50-GHz

PFLOPS-EFLOPS?

Supercomputer in a CPU Box

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Distributed Deep Learning Training Across Multiple nodes
Each node running multiple workers/node

Uses optimized MPI Library for gradient updates over network fabric
Caffe – Use Optimized Intel® MPI ML Scaling Library (Intel® MLSL)

TensorFlow* – Uber Horovod MPI Library

Intel Best Known Methods: https://ai.intel.com/accelerating-deep-learning-training-inference-system-level-optimizations/
https://www.intel.ai/using-intel-xeon-for-multi-node-scaling-of-tensorflow-with-horovod

Scaleout Training: Multi-Workers & Multi-Nodes

Interconnect Fabric (Intel® OPA or Ethernet)

Node 1 Node NNode 2

https://ai.intel.com/accelerating-deep-learning-training-inference-system-level-optimizations/
https://www.intel.ai/using-intel-xeon-for-multi-node-scaling-of-tensorflow-with-horovod

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Training Performance: ResNet-50/ChestXRay14
Intel® 2S Xeon® Gold 6148F processor based DellEMC* PowerEdge C6420 Zenith* Cluster on OPA™ Fabric

TensorFlow* 1.6 + horovod*, IMPI

1

104

120

147

0

20

40

60

80

100

120

140

160

Node=1, Workers=4
Global Batch Size=64

Nodes=128, Workers=512
Global Batch Size=8192

Nodes=200, Workers=800
Global Batch Size=8000

Nodes=256, Workers=1024
Global Batch Size=8192

Re
la

tiv
e

Tr
ai

ni
ng

 T
hr

ou
gh

pu
t (

im
ag

es
/s

ec
)

(H
ig

he
r i

s B
et

te
r)

104x faster using 128
Intel® Xeon® nodes!

120x faster using 200
Intel® Xeon® nodes!

147x faster using 256
Intel® Xeon® nodes!

Performance results are based on testing as of May 17, 2018 and may not reflect all publicly available security update. See configuration disclosure for details. No product can be absolutely secure.
Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not
guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Software and workloads used in performance tests may have been
optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You
should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit: http://www.intel.com/performance

http://www.intel.com/performance

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Copyright © Intel Corporation 2019

*Other names and brands may be claimed as the property of others.
34

What’s Happening Under The Hood?

Intel® MKL-DNN Functionality

Intel® MKL-DNN v0.16

Convolution Direct 3D, Depthwise separable convolution

Winograd convolution

Deconvolution

Fully Connected Layer Inner Product

Pooling Maximum

Average (include/exclude padding)

Normalization LRN across/within channel, Batch normalization

Eltwise (Loss/activation) ReLU(bounded/soft), ELU, Tanh;

Softmax, Logistic, linear; square, sqrt, abs

Data manipulation Reorder, sum, concat, View

RNN cell RNN cell, LSTM cell, GRU cell

Fused primitive Conv+ReLU+sum, BatchNorm+ReLU

Data type f32, s32, s16, s8, u8

Intel and the Intel logo are trademarks of Intel Corporation in the U. S. and/or other countries. *Other names and brands may be

claimed as the property of others. Copyright © 2016, Intel Corporation.

Intel Confidential

Features:

§ Training (float32) and inference (float32, int8)

§ CNNs (1D, 2D and 3D), RNNs (plain, LSTM, GRU)

§ Optimized for Intel processors

Portability:

§ Compilers: Intel® C++ Compiler/Clang/GCC/MSVC*

§ OSes: Linux*, Windows*, Mac*

§ Threading: OpenMP*, TBB

Frameworks that use Intel ® MKL-DNN:

Caffe*, TensorFlow*, MxNet*, PaddlePaddle*, Pytorch*, …

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Intel® MKL-DNN Optimization Vectorization

Optimizations: Intel® AVX-512 vectorization, data reuse, parallelization

Lower
precision

integer ops

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

36

Converting to/from
optimized layout can be
less expensive than
operating on un-optimized
layout.

CPU Friendly Layout is
preferred by most MKL-
DNN primitives

MklConv2D

Input Filter

Convert

Convert Convert

MklReLU

Convert

Shape

Convert

MklConv2D

Input Filter

Convert Convert

MklReLU

Convert

Shape

After Layout Conversion After Layout Propagation

AI Framework Software Optimizations
Layout Propagation

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

AI Framework Software Optimizations
Load Balancing

37

TensorFlow* graphs offer opportunities for parallel
execution.

Threading model, Tune your Intel® MKL w/
1. inter_op_parallelism_threads = max

number of operators that can be executed in parallel

2. intra_op_parallelism_threads = max
number of threads to use for executing an operator

3. OMP_NUM_THREADS = MKL-DNN equivalent of
intra_op_parallelism_threads

More details:
https://www.tensorflow.org/performance/performan
ce_guide

MklConv2D

Input Filter

Convert Convert

MklReLU

Convert

Shape

>>> config = tf.ConfigProto()
>>> config.intra_op_parallelism_threads = 56
>>> config.inter_op_parallelism_threads = 2
>>> tf.Session(config=config)

https://www.tensorflow.org/performance/performance_guide

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others. 39

Intel-Optimized Frameworks: How To Get?

https://www.intel.ai/framework-optimizations

Check out our intel.ai for the framework optimizations page

https://www.intel.ai/framework-optimizations

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

40

Intel® Optimization of TensorFlow*: How To Get?
Intel TensorFlow* install guide is available à https://software.intel.com/en-us/articles/intel-optimization-for-tensorflow-installation-guide

•Refer to Corey Adams talkOn Theta

https://software.intel.com/en-us/articles/intel-optimization-for-tensorflow-installation-guide

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

41

Intel® Optimization of PyTorch*: How To Get?

•Refer to Corey Adams talkOn Theta

Intel PyTorch* getting started guide is available à https://software.intel.com/en-us/articles/getting-started-with-intel-optimization-of-pytorch

https://software.intel.com/en-us/articles/getting-started-with-intel-optimization-of-pytorch

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

43

Article Plug
Intel–Optimized TensorFlow* Performance Considerations

https://software.intel.com/en-us/articles/maximize-tensorflow-
performance-on-cpu-considerations-and-recommendations-for-
inference

https://software.intel.com/en-us/articles/maximize-tensorflow-performance-on-cpu-considerations-and-recommendations-for-inference

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

software.intel.com/ai

Get 4-weeks FREE access to the
Intel® AI DevCloud, use your
existing Intel® Xeon® Processor-
based cluster, or use a public
cloud service

Self-Help: Intel® AI Developer Program
For developers, students, instructors, and startups

teach Share

Developlearn

Showcase your innovation at
industry & academic events
and online via the Intel AI
community forum

Get smarter using online
tutorials, webinars,

student kits and support
forums

Educate others using
available course

materials, hands-on labs,
and more

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Free Support: Intel® AI Frameworks Forum
https://forums.intel.com

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Intel® AI Builders: Ecosystem

BUSINESS
INTELLIGENC

E
& ANALYTCS

VISION CONVERSATI
ONAL BOTS

AI TOOLS &
CONSULTING

AI
PaaS

HEALTHC
ARE

FINANCIA
L

SERVICES
RETAIL TRANSPORT

ATION
NEWS,

MEDIA &
ENTERTAI

NMENT

AGRICUL
TURE

LEGAL &
HR

ROBOTIC
PROCESS
AUTOM
OATION

oem System
integrators

CROSS
VERTICAL

VERTICAL

HORIZON
TAL

Builders.intel.com/ai
Other names and brands may be claimed as the property of others.

100+ AI
Partners

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Intel® AI Builders: Solutions Library

Builders.intel.com/ai/solutionslibraryOther names and brands may be claimed as the property of others.

30+ Public
Whitepapers

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

More information at
www.intel.ai/framework-optimizations/

CALL TO ACTION

LEARN

EXPLORE

ENGAGE

Use Intel’s performance-
optimized libraries & frameworks

Use Our Forums for Free Support
forums.intel.com
Choose “Intel Optimized AI Frameworks” from list

For Disclosure under NDA Only

https://ai.intel.com/framework-optimizations/
https://ai.intel.com/framework-optimizations/

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

49

Questions?

Intel® Optimized AI Frameworks
https://anaconda.org/intel
https://software.intel.com/en-us/distribution-for-python
https://intelpython.github.io/daal4py
https://github.com/IntelLabs/hpat

Get fast python* execution
Nathan Greeneltch, PhD

Consulting Engineer, Intel Corporation

Intel® Distribution of Python 2019

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others. 51

Python: Lingua Franca of Data Science

Kaggle ML and Data Science Survey, 2017

Python

https://www.kaggle.com/sudalairajkumar/an-interactive-deep-dive-into-survey-results/datahttps://www.kdnuggets.com/2018/05/poll-tools-analytics-data-science-machine-learning-
results.html

Python

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

52

The Reality of “Data Centric Computing”

Performance
Limited

• Software is slow and single-node for many organizations
• Only sample a small portion of the data

Productivity
Limited

• More performant/scalable implementations require significantly more
development & deployment skills & time

Compute
Limited • Performance bottleneck often in compute, not storage/memory

Software Challenges:

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others. 53

Performance of Python*

Python Interpreter
GIL

C

100x-1000x performance gap

Optimizing compiler
OpenMP*/TBB/pthreads

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

54

High Performance Python

Python*

C

more nodes,
more cores,
more threads,
wider vectors, …

Intel® Performance Libraries

(generations of processors)

Libraries Thin layer in Python or Cython

Native highly optimized
libraries (Intel MKL, Intel
DAAL, Intel IPP)

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

55

Productivity with Performance via Intel® Distribution for Python*

Intel® Distribution for Python*

lll

Easy, out-of-the-box access to high performance Python
• Prebuilt accelerated solutions for data analytics, numerical computing, etc.
• Drop in replacement for your existing Python. No code changes required.

Learn More: software.intel.com/distribution-for-python

mpi4py smp

Copyright © Intel Corporation 2019

*Other names and brands may be claimed as the property of others.
56

Intel® Distribution for Python*
https://software.intel.com/en-us/distribution-for-python

Accelerated NumPy, SciPy
Intel® MKL

Intel® C and Fortran compilers
Linear algebra, universal functions, FFT

conda create –c intel intelpython3_full

docker pull intelpython/intelpython3_full

Accelerated Scikit-Learn
Intel® MKL

Intel® C and Fortran compilers
Intel® Data Analytics Acceleration Library (DAAL)

via NumPy/Scipy

Solutions for efficient parallelism
TBB4py

github.com/IntelPython/smp
Intel® MPI library

Python APIs for Intel® MKL functions
github.com/IntelPython/mkl_fft

github.com/IntelPython/mkl_random

github.com/IntelPython/mkl-service [*]

Python APIs for Intel® DAAL
github.com/IntelPython/daal4py

https://software.intel.com/en-us/distribution-for-python/benchmarks

Numba with upstreamed Intel contributions
Parallel Accelerator

support for SVML
support for TBB/OpenMP threading runtimes

pip install intel-numpy intel-scipy intel-scikit-learn

New Features for 2019

57

Copyright © Intel Corporation 2019

*Other names and brands may be claimed as the property of others.

Daal4py: Accelerated Analytics tools for Data Scientists

• Package created to address the needs of Data Scientists and Framework
Designers to harness the Intel® Data Analytics Acceleration Library (DAAL)
with a Pythonic API

• Pandas compatible, one-liner API for accessing many hardware accelerated
Machine Learning and Analytics functions

• Powers our Scikit-Learn* accelerations in our shipped version of the package

• Extends capabilities past Scikit-learn by providing scaling and distributed
modes

Copyright © Intel Corporation 2019

*Other names and brands may be claimed as the property of others.
59

HPAT: A compiler-based framework to speed up

Pandas/NumPy

• Used to accelerate the popular Pandas framework, specifically for the

Dataframe construct used in analytics and machine learning

• Accelerates previously unoptimizable portion of end-to-end workflows by
accelerating the dataframe and preprocessing steps of production-level

machine learning

• Extends capabilities utilizing pandas instead of migrating to another

production solution with little to no code changes

• Takes advantage of additional compute nodes via MPI for distributed scaling
of compute kernels

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

60

Scaling analytics workloads end-to-end

• Many solutions in the industry have been focused solely on performance of training
or inference—but in practice this is only 10% of the actual time

• The majority of the time spent is from the data ingress and preprocessing steps

• Identifying the methods to speed up a data analytics tasks from end-to-end includes
both preprocessing and scale out to complete the performance picture

• Creating both the initial prototype or discovery process with ML and extending the
code to production with the same tools and increased performance is the desired
workflow for any Data Scientist

Python* Data Analytics that
scales
Nathan Greeneltch, PhD

Consulting Engineer, Intel Corporation

Intel® DAAL and HPAT

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

62

Scaling analytics workloads end-to-end

Pandas
Spark
HPAT

Scikit-learn
Spark
DL-frameworks
daal4py

more nodes, more cores, more threads, wider vectors, …

Data Input Data
Preprocessing Model Creation Prediction

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

63

Scaling analytics workloads end-to-end

HPAT daal4py

• Statically compiles analytics code to binary

• Simply annotate with @hpat.jit

• Built on Anaconda Numba compiler

Drop-in acceleration of Python analytics
(Pandas, Numpy & select custom Python)

Ease-of-use of scikit-learn
+ Performance of DAAL

Automatically scales to multi-node with MPI

• High-level Python API for DAAL

• 10x fewer LOC wrt DAAL for single node,
100x fewer LOC wrt DAAL for multi-node

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others. 64

End-to-end performance and scale out of analytics

Intel’s libraries, tools, and runtimes help accelerate the entire analytics
process from preprocessing through machine learning and scale out

NumPy

Intel® Math Kernel
Library (MKL)

Intel®
Threading

Building Blocks
(TBB)

Pandas

HPAT

scikit-learn daal4py

Intel®
MPI

Intel® Data Analytics Acceleration Library
(DAAL)

Intel® Math Kernel
Library (MKL)

Intel® Threading
Building Blocks (TBB)

Preprocessing, Dataframe and
Data manipulation

Machine Learning and Scale out

Data movement

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others. 65

$ aprun -n # –N # python ./process_times.py

Accelerating Pandas using HPAT

import pandas as pd
import hpat

@hpat.jit
def process_times():

df = pq.read_table(‘data.parquet’).to_pandas();
df[‘event_time’] = pd.DatetimeIndex(df[‘event_time’])
df[‘hr’] = df.event_time.map(lambda x: x.hour)
df[‘minute’] = df.event_time.map(lambda x: x.minute)
df[‘second’] = df.event_time.map(lambda x: x.second)
df[‘minute_day’] = df.apply(lambda row: row.hr*60 + row.minute, axis = 1)
df[‘event_date’] = df.event_time.map(lambda x: x.date())
df[‘indicator_cleaned’] = df.indicator.map(lambda x: -1 if x == ‘na’ else int(x))

Copyright © Intel Corporation 2019

*Other names and brands may be claimed as the property of others.
66

HPAT’s Scope of Functionalities (Early Preview)

Operations

• Python/Numpy basics

• Statistical operations (mean, std, var, …)

• Relational operations (filter, join, groupby)

• Custom Python functions (apply, map)

Data

• Missing values

• Time series, dates

• Strings, unicode

• Dictionaries

• Pandas

Interoperability • I/O integration (CSV, Parquet, HDF5, Xenon)

• Daal4py integration

Extend Numba to support

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

67

Accelerating pandas CSV read

Intel(R) Xeon(R) CPU E5-2699 v4: 2.20GHz; 1chreads
per core; 22 cores per socket; 2 sockets
Intel(R) Xeon(R) Platinum 8175M CPU: 2.50GHz; 2
threads per core; 24 cores per socket; 2 sockets
Skylake 8180 S2P2C01B: 2.5GHz
1 thread per core; 28 cores per socket; 2 sockets

Patches merged to pandas mainline:
https://github.com/pandas-dev/pandas/pull/25804
https://github.com/pandas-dev/pandas/pull/25784

70x-81x
speedup

https://github.com/pandas-dev/pandas/pull/25804
https://github.com/pandas-dev/pandas/pull/25784

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others. 68

HPAT Details

• Open Source: https://github.com/IntelLabs/hpat

• BSD Licensed

• Built on top of Numba, leverages many of Intel’s vectorization optimizations

• Little to no code changes required (only @hpat.jit decorator)

• Optimizes the pandas framework and numpy code together to accelerate
preprocessing code and tasks

• Major release later this year

https://github.com/IntelLabs/hpat

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

69

scikit-learn

Accelerating Machine Learning

Intel® Data Analytics Acceleration Library
(DAAL)

Intel® Math Kernel
Library (MKL)

Intel® Threading
Building Blocks (TBB)

Ø Efficient memory layout
via Numeric Tables

Ø Blocking for optimal cache
performance

Ø Computation mapped to
most efficient matrix
operations (in MKL)

Ø Parallelization via TBB

Ø Vectorization

Try it out! conda install -c intel scikit-learn

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others. 70

Accelerating scikit-learn through daal4py

> python -m daal4py <your-scikit-learn-script>
Monkey-patch any scikit-learn

on the command-line

import daal4py.sklearn
daal4py.sklearn.patch_sklearn()

Monkey-patch any scikit-learn
programmatically

Scikit-learn with daal4py patches applied
passes scikit-learn test-suite

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

71

Close to native code Scikit-learn* Performance with Intel® Distribution of Python
Compared to Stock Python packages on Intel® Xeon® processors

0%

20%

40%

60%

80%

100%

1K x 15K 1K x 15K 1M x 50 1Mx50 1M x 50 1M x 50 1M x 50 1M x 50 10K x 1K 10K x 1K

cosine dist correlation dist kmeans.fit kmeans.predict linear_reg.fit linear_reg.predict ridge_reg.fit ridge_reg.predict svm.fit
(binary)

svm.predict
(binary)

Pe
rf

or
m

an
ce

 E
ffi

ci
en

cy
 m

ea
su

re
d

ag
ai

ns
t

na
tiv

e
co

de
 w

ith
 In

te
l®

DA

AL

Function & Problem Size

Stock Python Intel® Distribution for Python 2019

Configuration: Stock Python: python 3.6.6 hc3d631a_0 installed from conda, numpy 1.15, numba 0.39.0, llvmlite 0.24.0, scipy 1.1.0, scikit-learn 0.19.2 installed from pip;Intel Python: Intel Distribution for Python 2019 Gold: python 3.6.5
intel_11, numpy 1.14.3 intel_py36_5, mkl 2019.0 intel_101, mkl_fft 1.0.2 intel_np114py36_6,mkl_random 1.0.1 intel_np114py36_6, numba 0.39.0 intel_np114py36_0, llvmlite 0.24.0 intel_py36_0, scipy 1.1.0 intel_np114py36_6, scikit-
learn 0.19.1 intel_np114py36_35; OS: CentOS Linux 7.3.1611, kernel 3.10.0-514.el7.x86_64; Hardware: Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz (2 sockets, 18 cores/socket, HT:off), 256 GB of DDR4 RAM, 16 DIMMs of 16 GB@2666MHz
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems,
components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated
purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Source: Intel Corporation - performance measured in Intel labs by Intel
employees. Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this
product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more
information regarding the specific instruction sets covered by this notice. Notice revision #20110804.

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

72

Accelerating K-Means

https://cloudplatform.googleblog.com/2017/11/Intel-performance-libraries-and-python-distribution-enhance-performance-and-scaling-of-Intel-Xeon-Scalable-processors-
on-GCP.html

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

73

Scaling Machine Learning Beyond a Single Node

scikit-learn daal4py

Try it out! conda install -c intel daal4py

Simple Python API
Powers scikit-learn

Intel®
MPI

Powered by DAAL

Scalable to multiple nodes

Intel® Data Analytics Acceleration Library
(DAAL)

Intel® Math Kernel
Library (MKL)

Intel® Threading
Building Blocks (TBB)

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others. 74

import daal4py as d4p

daal4py accepts data as CSV files, numpy arrays or pandas dataframes
here we let daal4py load process-local data from csv files
data = "kmeans_dense.csv"

Create algo object to compute initial centers
init = d4p.kmeans_init(10, method="plusPlusDense")
compute initial centers
ires = init.compute(data)
results can have multiple attributes, we need centroids
Centroids = iris.centroids
compute initial centroids & kmeans clustering
result = d4p.kmeans(10).compute(data, centroids)

K-Means using daal4py

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others. 75

import daal4py as d4p

initialize distributed execution environment
d4p.daalinit()

daal4py accepts data as CSV files, numpy arrays or pandas dataframes
here we let daal4py load process-local data from csv files
data = "kmeans_dense_{}.csv".format(d4p.my_procid())

compute initial centroids & kmeans clustering
init = d4p.kmeans_init(10, method="plusPlusDense", distributed=True)
centroids = init.compute(data).centroids
result = d4p.kmeans(10, distributed=True).compute(data, centroids)

aprun -n # -N # python ./kmeans.py

Distributed K-Means using daal4py

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others. 76

Distributed K-Means Using DAAL (C++ API)
***/
/*

! Content:
! C++ sample of K-Means clustering in the distributed processing mode
!**/

#include <mpi.h>

#include "daal.h"
#include "service.h"

#include "stdio.h"
#include <iostream>

using namespace std;
using namespace daal;

using namespace daal::algorithms;
using namespace daal::services;

typedef std::vector<byte> ByteBuffer;
typedef float algorithmFPType; /* Algorithm floating-point type */

/* K-Means algorithm parameters */

const size_t nClusters = 20;
const size_t nIterations = 5;

const size_t nBlocks = 4;

/* Input data set parameters */
const string dataFileNames[4] =
{

"./data/distributed/kmeans_dense.csv", "./data/distributed/kmeans_dense.csv",
"./data/distributed/kmeans_dense.csv", "./data/distributed/kmeans_dense.csv"

};

#define mpi_root 0
const int step3ResultSizeTag = 1;
const int step3ResultTag = 2;

NumericTablePtr loadData(int rankId)

{
/* Initialize FileDataSource<CSVFeatureManager> to retrieve the input data from a .csv file */

FileDataSource<CSVFeatureManager> dataSource(dataFileNames[rankId], DataSource::doAllocateNumericTable,
DataSource::doDictionaryFromContext);

/* Retrieve the data from the input file */
dataSource.loadDataBlock();

return dataSource.getNumericTable();
}

template <kmeans::init::Method method>
NumericTablePtr initCentroids(int rankId, const NumericTablePtr& pData);

NumericTablePtr computeCentroids(int rankId, const NumericTablePtr& pData, const NumericTablePtr& initialCentroids);

template <kmeans::init::Method method>
void runKMeans(int rankId, const NumericTablePtr& pData, const char* methodName)
{

if(rankId == mpi_root)
std::cout << "K-means init parameters: method = " << methodName << std::endl;

NumericTablePtr centroids = initCentroids<method>(rankId, pData);
for(size_t it = 0; it < nIterations; it++)

centroids = computeCentroids(rankId, pData, centroids);
/* Print the clusterization results */
if(rankId == mpi_root)

printNumericTable(centroids, "First 10 dimensions of centroids:", 20, 10);
}

int main(int argc, char *argv[])

{
int rankId, comm_size;
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &comm_size);
MPI_Comm_rank(MPI_COMM_WORLD, &rankId);

NumericTablePtr pData = loadData(rankId);

runKMeans<kmeans::init::plusPlusDense>(rankId, pData, "plusPlusDense");
runKMeans<kmeans::init::parallelPlusDense>(rankId, pData, "parallelPlusDense");

MPI_Finalize();

return 0;
}

static int lengthsToShifts(const int lengths[nBlocks], int shifts[nBlocks])
{

int shift = 0;
for(size_t i = 0; i < nBlocks; shift += lengths[i], ++i)

shifts[i] = shift;
return shift;

}

/* Send the value to all processes in the group and collect received values into one table */
static NumericTablePtr allToAll(const NumericTablePtr& value)
{

std::vector<NumericTablePtr> aRes;
ByteBuffer dataToSend;

if(value.get())
serializeDAALObject(value.get(), dataToSend);

const int dataToSendLength = dataToSend.size();
int perNodeArchLength[nBlocks];
for(size_t i = 0; i < nBlocks; i++)

perNodeArchLength[i] = 0;

MPI_Allgather(&dataToSendLength, sizeof(int), MPI_CHAR, perNodeArchLength, sizeof(int), MPI_CHAR, MPI_COMM_WORLD);

int perNodeArchShift[nBlocks];
const int totalToReceive = lengthsToShifts(perNodeArchLength, perNodeArchShift);
if(!totalToReceive)

return NumericTablePtr();

ByteBuffer dataToReceive(totalToReceive);
MPI_Allgatherv(&dataToSend[0], dataToSendLength, MPI_CHAR, &dataToReceive[0], perNodeArchLength, perNodeArchShift, MPI_CHAR, MPI_COMM_WORLD);

for(size_t i = 0, shift = 0; i < nBlocks; shift += perNodeArchLength[i], ++i)
{

if(!perNodeArchLength[i])

continue;
NumericTablePtr pTbl = NumericTable::cast(deserializeDAALObject(&dataToReceive[shift], perNodeArchLength[i]));

aRes.push_back(pTbl);
}
if(!aRes.size())

return NumericTablePtr();
if(aRes.size() == 1)

return aRes[0];

/* For parallelPlus algorithm */
RowMergedNumericTablePtr pMerged(new RowMergedNumericTable());
for(size_t i = 0; i < aRes.size(); ++i)

pMerged->addNumericTable(aRes[i]);
return NumericTable::cast(pMerged);

}

/* Send the value to all processes in the group and collect received values into one table */
static void allToMaster(int rankId, const NumericTablePtr& value, std::vector<NumericTablePtr>& aRes)
{

const bool isRoot = (rankId == mpi_root);
aRes.clear();

ByteBuffer dataToSend;
if(value.get())

serializeDAALObject(value.get(), dataToSend);
const int dataToSendLength = dataToSend.size();
int perNodeArchLength[nBlocks];

for(size_t i = 0; i < nBlocks; i++)
perNodeArchLength[i] = 0;

MPI_Gather(&dataToSendLength, sizeof(int), MPI_CHAR, isRoot ? perNodeArchLength : NULL, sizeof(int),
MPI_CHAR, mpi_root, MPI_COMM_WORLD);

ByteBuffer dataToReceive;

int perNodeArchShift[nBlocks];
if(isRoot)

{
const int totalToReceive = lengthsToShifts(perNodeArchLength, perNodeArchShift);
if(!totalToReceive)

return;
dataToReceive.resize(totalToReceive);

}
MPI_Gatherv(&dataToSend[0], dataToSendLength, MPI_CHAR, isRoot ? &dataToReceive[0] : NULL,

perNodeArchLength, perNodeArchShift, MPI_CHAR, mpi_root, MPI_COMM_WORLD);

if(!isRoot)
return;

aRes.resize(nBlocks);

for(size_t i = 0, shift = 0; i < nBlocks; shift += perNodeArchLength[i], ++i)
{

if(perNodeArchLength[i])
aRes[i] = NumericTable::cast(deserializeDAALObject(&dataToReceive[shift], perNodeArchLength[i]));

}
}

template <kmeans::init::Method method>
NumericTablePtr initStep1(int rankId, const NumericTablePtr& pData)

{
const size_t nVectorsInBlock = pData->getNumberOfRows();

/* Create an algorithm object for the K-Means algorithm */
kmeans::init::Distributed<step1Local, algorithmFPType, method> local(nClusters, nBlocks*nVectorsInBlock, rankId*nVectorsInBlock);
local.input.set(kmeans::init::data, pData);

local.compute();
return allToAll(local.getPartialResult()->get(kmeans::init::partialCentroids));

}

template <kmeans::init::Method method>

void initStep2(int rankId, const NumericTablePtr& pData, DataCollectionPtr& localNodeData,
const NumericTablePtr& step2Input, bool bFirstIteration, std::vector<NumericTablePtr>& step2Results,

bool bOutputForStep5Required = false)
{

kmeans::init::Distributed<step2Local, algorithmFPType, method> step2(nClusters, bFirstIteration);
step2.parameter.outputForStep5Required = bOutputForStep5Required;
step2.input.set(kmeans::init::data, pData);
step2.input.set(kmeans::init::internalInput, localNodeData);
step2.input.set(kmeans::init::inputOfStep2, step2Input);

step2.compute();
if(bFirstIteration)

localNodeData = step2.getPartialResult()->get(kmeans::init::internalResult);
allToMaster(rankId, step2.getPartialResult()->get(

bOutputForStep5Required ? kmeans::init::outputOfStep2ForStep5 : kmeans::init::outputOfStep2ForStep3), step2Results);
}

template <kmeans::init::Method method>
NumericTablePtr initStep3(kmeans::init::Distributed<step3Master, algorithmFPType, method>& step3, std::vector<NumericTablePtr>& step2Results)

{
for(size_t i = 0; i < step2Results.size(); ++i)

step3.input.add(kmeans::init::inputOfStep3FromStep2, i, step2Results[i]);
step3.compute();
ByteBuffer buff;

NumericTablePtr step4InputOnRoot;
for(size_t i = 0; i < nBlocks; ++i)

{
NumericTablePtr pTbl = step3.getPartialResult()->get(kmeans::init::outputOfStep3ForStep4, i); /* can be null */
if(i == mpi_root)
{

step4InputOnRoot = pTbl;

continue;
}

buff.clear();
size_t size = pTbl.get() ? serializeDAALObject(pTbl.get(), buff) : 0;
MPI_Send(&size, sizeof(size_t), MPI_BYTE, int(i), step3ResultSizeTag, MPI_COMM_WORLD);
if(size)

MPI_Send(&buff[0], size, MPI_BYTE, int(i), step3ResultTag, MPI_COMM_WORLD);
}
return step4InputOnRoot;

}

NumericTablePtr receiveStep3Output(int rankId)
{

size_t size = 0;
MPI_Status status;
MPI_Recv(&size, sizeof(size_t), MPI_BYTE, mpi_root, step3ResultSizeTag, MPI_COMM_WORLD, &status);

if(size)
{

ByteBuffer buff(size);
MPI_Recv(&buff[0], size, MPI_BYTE, mpi_root, step3ResultTag, MPI_COMM_WORLD, &status);
return NumericTable::cast(deserializeDAALObject(&buff[0], size));

}
return NumericTablePtr();

}

template <kmeans::init::Method method>
NumericTablePtr initStep4(int rankId, const NumericTablePtr& pData, const DataCollectionPtr& localNodeData,

const NumericTablePtr& step4Input)
{

NumericTablePtr step4Result;
if(step4Input)
{

/* Create an algorithm object for the step 4 */
kmeans::init::Distributed<step4Local, algorithmFPType, method> step4(nClusters);
/* Set the input data to the algorithm */
step4.input.set(kmeans::init::data, pData);

step4.input.set(kmeans::init::internalInput, localNodeData);
step4.input.set(kmeans::init::inputOfStep4FromStep3, step4Input);

/* Compute and get the result */
step4.compute();
step4Result = step4.getPartialResult()->get(kmeans::init::outputOfStep4);

}
return allToAll(step4Result);

}

template<>
NumericTablePtr initCentroids<kmeans::init::plusPlusDense>(int rankId, const NumericTablePtr& pData)
{

const bool isRoot = (rankId == mpi_root);
const kmeans::init::Method method = kmeans::init::plusPlusDense;

/* Internal data to be stored on the local nodes */
DataCollectionPtr localNodeData;

/* Numeric table to collect the results */
RowMergedNumericTablePtr pCentroids(new RowMergedNumericTable());
/* First step on the local nodes */

NumericTablePtr step2Input = initStep1<method>(rankId, pData);
pCentroids->addNumericTable(step2Input);

/* Create an algorithm object for the step 3 */
typedef kmeans::init::Distributed<step3Master, algorithmFPType, method> Step3Master;
SharedPtr<Step3Master> step3(isRoot ? new Step3Master(nClusters) : NULL);
for(size_t iCenter = 1; iCenter < nClusters; ++iCenter)
{

std::vector<NumericTablePtr> step2ResultsOnMaster;
initStep2<method>(rankId, pData, localNodeData, step2Input, iCenter == 1, step2ResultsOnMaster);

NumericTablePtr step4Input = (step3 ? initStep3<method>(*step3, step2ResultsOnMaster) : receiveStep3Output(rankId));
step2Input = initStep4<method>(rankId, pData, localNodeData, step4Input);
pCentroids->addNumericTable(step2Input);

}
return daal::data_management::convertToHomogen<float>(*pCentroids); /* can be returned as pCentroids as well */

}

template<>
NumericTablePtr initCentroids<kmeans::init::parallelPlusDense>(int rankId, const NumericTablePtr& pData)
{

const bool isRoot = (rankId == mpi_root);
const kmeans::init::Method method = kmeans::init::parallelPlusDense;

/* default value of nRounds used by all steps */
const size_t nRounds = kmeans::init::Parameter(nClusters).nRounds;

/* Create an algorithm object for the step 5 */

typedef kmeans::init::Distributed<step5Master, algorithmFPType, method> Step5Master;
SharedPtr<Step5Master> step5(isRoot ? new Step5Master(nClusters) : NULL);

/* Internal data to be stored on the local nodes */
DataCollectionPtr localNodeData;

/* First step on the local nodes */

NumericTablePtr step2Input = initStep1<method>(rankId, pData);
if(step5)

step5->input.add(kmeans::init::inputCentroids, step2Input);

/* Create an algorithm object for the step 3 */

typedef kmeans::init::Distributed<step3Master, algorithmFPType, method> Step3Master;
SharedPtr<Step3Master> step3(isRoot ? new Step3Master(nClusters) : NULL);

for(size_t iRound = 0; iRound < nRounds; ++iRound)
{

/* Perform step 2 */

std::vector<NumericTablePtr> step2ResultsOnMaster;
initStep2<method>(rankId, pData, localNodeData, step2Input, iRound == 0, step2ResultsOnMaster);

/* Perform step 3 */
NumericTablePtr step4Input = (step3 ? initStep3<method>(*step3, step2ResultsOnMaster) : receiveStep3Output(rankId));
/* Perform step 4 */

step2Input = initStep4<method>(rankId, pData, localNodeData, step4Input);
if(step5)

step5->input.add(kmeans::init::inputCentroids, step2Input);
}

/* One more step 2 */
std::vector<NumericTablePtr> step2Results;
initStep2<method>(rankId, pData, localNodeData, step2Input, false, step2Results, true);
if(step5) /* isRoot == true */

{
for(size_t i = 0; i < step2Results.size(); ++i)

step5->input.add(kmeans::init::inputOfStep5FromStep2, step2Results[i]);
step5->input.set(kmeans::init::inputOfStep5FromStep3, step3->getPartialResult()->get(kmeans::init::outputOfStep3ForStep5));
step5->compute();
step5->finalizeCompute();
return step5->getResult()->get(kmeans::init::centroids);

}
return NumericTablePtr();

}

NumericTablePtr computeCentroids(int rankId, const NumericTablePtr& pData, const NumericTablePtr& initialCentroids)
{

const bool isRoot = (rankId == mpi_root);

ByteBuffer nodeCentroids;
size_t CentroidsArchLength = (isRoot ? serializeDAALObject(initialCentroids.get(), nodeCentroids) : 0);

/* Get centroids from the root node */
MPI_Bcast(&CentroidsArchLength, sizeof(size_t), MPI_CHAR, mpi_root, MPI_COMM_WORLD);

if(!isRoot)

nodeCentroids.resize(CentroidsArchLength);
MPI_Bcast(&nodeCentroids[0], CentroidsArchLength, MPI_CHAR, mpi_root, MPI_COMM_WORLD);

NumericTablePtr centroids = NumericTable::cast(deserializeDAALObject(&nodeCentroids[0], CentroidsArchLength));

/* Create an algorithm to compute k-means on local nodes */
kmeans::Distributed<step1Local, algorithmFPType, kmeans::lloydDense> localAlgorithm(nClusters);

/* Set the input data set to the algorithm */

localAlgorithm.input.set(kmeans::data, pData);
localAlgorithm.input.set(kmeans::inputCentroids, centroids);

/* Compute k-means */
localAlgorithm.compute();

/* Serialize partial results required by step 2 */

ByteBuffer nodeResults;
size_t perNodeArchLength = serializeDAALObject(localAlgorithm.getPartialResult().get(), nodeResults);

/* Serialized data is of equal size on each node if each node called compute() equal number of times */
ByteBuffer serializedData;
if(isRoot)

serializedData.resize(perNodeArchLength * nBlocks);

/* Transfer partial results to step 2 on the root node */
MPI_Gather(&nodeResults[0], perNodeArchLength, MPI_CHAR, serializedData.size() ? &serializedData[0] : NULL,

perNodeArchLength, MPI_CHAR, mpi_root, MPI_COMM_WORLD);

if(isRoot)

{
/* Create an algorithm to compute k-means on the master node */
kmeans::Distributed<step2Master, algorithmFPType, kmeans::lloydDense> masterAlgorithm(nClusters);

for(size_t i = 0; i < nBlocks; i++)
{

/* Deserialize partial results from step 1 */

SerializationIfacePtr ptr = deserializeDAALObject(&serializedData[perNodeArchLength * i], perNodeArchLength);
kmeans::PartialResultPtr dataForStep2FromStep1 = dynamicPointerCast<kmeans::PartialResult, SerializationIface>(ptr);

/* Set local partial results as input for the master-node algorithm */
masterAlgorithm.input.add(kmeans::partialResults, dataForStep2FromStep1);

}

/* Merge and finalizeCompute k-means on the master node */
masterAlgorithm.compute();

masterAlgorithm.finalizeCompute();

/* Retrieve the algorithm results */
return masterAlgorithm.getResult()->get(kmeans::centroids);

}

return NumericTablePtr();
}

~400 LOC total

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

77

Strong & Weak Scaling via daal4py
Hardware

Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz,
EIST/Turbo on

2 sockets, 20 Cores per socket

192 GB RAM

16 nodes connected with Infiniband

Operating
System

Oracle Linux Server release 7.4

Data Type double

On a 32-node cluster (1280 cores) daal4py computed K-Means (10
clusters) of 1.12 TB of data in 107.4 seconds and 35.76 GB of data in
4.8 seconds.

On a 32-node cluster (1280 cores) daal4py computed linear
regression of 2.15 TB of data in 1.18 seconds and 68.66 GB of data
in less than 48 milliseconds.

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others. 78

import daal4py as d4p

Configure a Linear regression training object for streaming
train_algo = d4p.linear_regression_training(interceptFlag=True, streaming=True)

assume we have a generator returning blocks of (X,y)...
rn = read_next(infile)

on which we iterate
for chunk in rn:

algo.compute(chunk.X. chunk.y)

finalize computation
result = algo.finalize()

Streaming data (linear regression) using daal4py

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Intel® Data Analytics Acceleration (Intel® DAAL) Algorithms
supported by daal4py Data Transformation and Analysis

Basic statistics for
datasets

Low order
moments

Variance-
Covariance

matrix

Correlation and
dependence

Cosine distance

Correlation
distance

Matrix factorizations

SVD

QR

Cholesky

Dimensionality
reduction

PCA

Outlier detection

Association rule
mining (Apriori)

Univariate

MultivariateQuantiles

Order
statistics

Optimization solvers
(SGD, AdaGrad, lBFGS)

Math functions
(exp, log,…)

Algorithms supporting batch, online and/or distributed processing

Algorithms supporting batch processing

79

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

Intel® DAAL Algorithms supported by daal4py
Machine Learning

Supervised
learning

Regression

Linear Regression

Classification

Weak
learner*

Boosting*
(Ada, Brown, Logit)

Naïve Bayes

kNN

Support Vector Machine

Unsupervised
learning

K-Means
Clustering

EM for GMM

Collaborative
filtering

Alternating
Least Squares

Ridge Regression

Algorithms supporting batch, online and/or distributed processing

Algorithms supporting batch processing

Decision Forest

Decision Tree

GradientBoosting

*Expected with DAAL® 2020

80

Copyright © Intel Corporation 2019

*Other names and brands may be claimed as the property of others.
81

Intel® DAAL for Python*: Summary

•Close to native performance through Intel® DAAL

•Efficient MPI scale-out

•Streaming
Fast & Scalable

•Known usage model

•PicklableEasy to use

•Object model separating concerns

•Plugs into scikit-learn

•Plugs into HPAT
Flexible

•Open source: https://github.com/IntelPython/daal4pyOpen

https://intelpython.github.io/daal4py/

https://github.com/IntelPython/daal4py
https://intelpython.github.io/daal4py/

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

82

Intel® HPAT: How to get (check github)

•conda create -n HPAT -c ehsantn -c anaconda -c conda-forge hpatConda

https://intellabs.github.io/hpat-doc/dev/index.html

https://intellabs.github.io/hpat-doc/dev/index.html

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

More information at
https://software.intel.com/en-us/distribution-for-
python

CALL TO ACTION

LEARN

EXPLORE

ENGAGE

Use Intel’s accelerated Python*
libraries

Use Our Forums for Free Support
forums.intel.com

For Disclosure under NDA Only

https://software.intel.com/en-us/distribution-for-python
https://ai.intel.com/framework-optimizations/

Copyright © Intel Corporation 2019
*Other names and brands may be claimed as the property of others.

84

Questions?

Intel® Distribution for Python*
https://anaconda.org/intel
https://software.intel.com/en-us/distribution-for-python
https://intelpython.github.io/daal4py
https://github.com/IntelLabs/hpat

